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Abstract
We propose a block-cipher mode of operation, EAX, for authenticated-encryption with associated-

data (AEAD). Given a nonce N , a messageM , and a header H , the mode protects the privacy of M
and the authenticit y of both M and H . Strings N ; M ; H 2 f 0; 1g� are arbitrary , and the mode uses
2dM =ne+ dH =ne+ dN=ne block-cipher calls when these strings are nonempty and n is the block length
of the underlying block cipher. Among EAX 's characteristics are that it is on-line (the length of a message
isn't needed to begin processing it) and a �xed header can be pre-processed,e�ectiv ely removing the
per-messagecost of binding it to the ciphertext. EAX is obtained by instantiating a simple generic-
composition method, EAX2, and then collapsing its two keys into one. EAX is provably secureunder a
standard complexity-theoretic assumption. EAX is an alternativ e to CCM [19], and is lik ewisepatent-free.

1 In tro duction

AE and AEAD. Authenticated encryption (AE) schemesare symmetric-key mechanismsby which a mes-
sageM is a transformed into a ciphertext C in such a way that C protects both privacy and authenticit y.
Though AE schemesgo back more than 20 years, only recently did AE get recognizedas a distinct and
signi�cant cryptographic goal [6,7,12]. Two factors seemto have triggered this. First was the realization
that peoplehad beendoing rather poorly when they tried to glue together a traditional (priv acy-only) en-
cryption schemeand a messageauthentication code (MA C) [5,6,14]; secondwas the emergenceof a classof
AE schemes[11,17] that did not work by gluing together an encryption schemeand a MAC.

Following the emergenceof new AE schemesand the analysisof old ones,it was realized that often times
not all the data should be encrypted|in many applications we have a mixture of secretand non-secretdata,
and it would benice to havea modeof operation that providesprivacy for the secretdata and authenticit y for
both typesof data. Thus wasborn the notion of authenticated-encryption with associated-data (AEAD) [16].
The non-secretdata is called the associated data or the header.

This document. In this note we proposea new AEAD scheme, called EAX. The mechanism is a \con-
ventional" AEAD scheme, meaning a method that, using a block cipher, makes two passes,one aimed at
achieving privacy and one aimed at achieving authenticit y. Within this spaceof conventional schemes,we
want to do as well as possible. Doing well entails issuesof e�ciency , simplicit y, elegance,patent avoidance,
easeof correct use,and provable-security guarantees.

Histor y and rela ted work. The AEAD scheme known as CCM was recently proposed by Whiting,
Housley, and Ferguson[19]. By specifying a conventional, two-passAEAD scheme,the CCM authors aimed
to avoid the Intellectual Property (IP) associated to the new, privacy-and-authenticit y-melded schemes.But
CCM embodies limitations that have nothing to do with the IP that it works to avoid. A note closelyrelated
to the current one discussesthese limitations [18]. The current note was motivated by a desire to �x the
issuesidenti�ed in CCM while staying within its two-pass(patent-avoiding) framework.
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Algorithm CBCK (M )

10 Let M 1 � � � M m  M where jM i j = n
11 C0  0n

12 for i  1 to m do
13 Ci  EK (M i � Ci � 1)
14 return Cm

Algorithm CTR N
K (M )

20 m  djM j=ne
21 S  EK (N ) k EK (N + 1) k � � � k EK (N + m� 1)
22 C  M � S [�rst jM j bits]
23 return C

Algorithm pad(M ; B ; P)

30 if jM j 2 f n; 2n; 3n; : : :g
31 then return M �! B ,
32 else return (M k 10n � 1� ( jM j mo d n ) ) �! P

Algorithm OMACK (M )

40 L  EK (0n ); B  2L ; P  4L
41 return CBCK (pad (M ; B ; P))

Algorithm OMAC t
K (M )

50 return OMACK ([t ]n k M )

Figure 1: Basic building blocks. The block cipher E : Key � f 0; 1gn ! f 0; 1gn is �xed and K 2 Key. For CBC,
M 2 (f 0; 1gn )+ . For CTR , M 2 f 0; 1g� and N 2 f 0; 1gn . For pad, M 2 f 0; 1g� and B ; P 2 f 0; 1gn and �! xors the
shorter string into the end of longer one. For OMA C, M 2 f 0; 1g� and t 2 [0::2n � 1] and the multiplication of a number
by a string L is done in GF(2n ).

2 Preliminaries

All strings in this note are over the binary alphabet f 0; 1g. For L a set of strings and n � 0 a number, we
let L n and L � have their usual meanings. The concatenationof strings X and Y is denotedX k Y or simply
X Y . The string of length 0, called the empty string, is denoted" . If X 2 f 0; 1g� we let jX j denoteits length,
in bits. If X 2 f 0; 1g� and ` � jX j then the �rst ` bits of X are denoted X [�rst ` bits]. When X 2 f 0; 1gn

is a nonempty string and t 2 N is a number we let X + t be the n-bit string that results from regarding X
as a nonnegative number x (binary notation, most-signi�cant-bit �rst), adding x to t , taking the result
modulo 2n , and converting this number back into an n-bit string. If t 2 [0::2n � 1] we let [t ]n denote the
encoding of t into an n-bit binary string (msb �rst, lsb last). If X and P are strings then we let X �! P (the
xor-at-the-end operator) denote the string of length ` = maxfj X j; jP jg bits that is obtained by prepending�
� jX j � jP j

�
� zero-bits to the shorter string and then xoring this with the other string. (In other words, xor

the shorter string into the end of the longer string.) A block cipher is a function E : Key� f 0; 1gn ! f 0; 1gn

whereKey is a �nite, nonempty set and n � 1 is a number and EK (�) = E(K ; �) is a permutation on f 0; 1gn .
The number n is called the block length. Throughout this note we �x such a block cipher E .

In Figure 1 we de�ne the algorithms CBC, CTR, pad, OMAC (no superscript), and OMAC � (with
superscript). The algorithms CBC (the CBC MAC) and CTR (counter-mode encryption) are standard.
Algorithm pad is usedonly to de�ne OMAC. Algorithm OMAC [9] is a pseudorandomfunction (PRF) that
is a one-key variant of the algorithm XCBC [8]. Algorithm OMAC � is like OMAC but takes an extra
argument, the integer t . This algorithm is a \t weakable" PRF [15], tweaked in the most simple way possible.

We explain the notation usedin the de�nition of OMAC. The value of iL (line 40: i an integer in f 2; 4g
and L 2 f 0; 1gn ) is the n-bit string that is obtained by multiplying L by the n-bit string that represents the
number i . The multiplication is done in the �nite �eld GF(2n ), using a canonical polynomial to represent
�eld points. For n = 128we usethe polynomial x128 + x7 + x2 + x+ 1. In that case,2L = L<< 1 if the �rst bit
of L is 0 and 2L = (L<< 1) � 012010000111otherwise, where L<< 1 meansthe left shift of L by one position
(the �rst bit vanishing and a zero entering into the last bit). The value of 4L is simply 2(2L).

We have madea small modi�cation to the OMAC algorithm as it was originally presented, changing one
of its two constants. Speci�cally , the constant 4 at line 40 was the constant 1=2 (the multiplicativ e inverse
of 2) in the original de�nition of OMAC [9]. The OMAC authors indicate that they will promulgate this
modi�cation [10], which slightly simpli�es implementations.
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3 EAX Goals

We wanted a block-cipher-based,nonce-usingAEAD scheme. It should provide both privacy, in the sense
of indistinguishabilit y from random bits, and integrit y, in the senseof an adversary's inabilit y to produce a
new but valid (nonce, header, ciphertext) triple [16]. Nothing should be assumedabout the noncesexcept
that they are non-repeating. Security must be demonstratedusing the standard, provable-security approach.
The scheme should employ no tool beyond a block cipher E : Key � f 0; 1gn ! f 0; 1gn that it is basedon.
We should assumenothing about E beyond its security in the senseof a pseudorandompermutation (PRP).
We expect that E will often be instantiated by AES, but we should make no restrictions in this direction
(such as insisting that n = 128). The schemeshould be simple and natural (so, in particular, it should avoid
complicated length-annotation). It should be a \conventional" AEAD scheme, making a separateprivacy
passand authenticit y pass,using no known IP.

We wanted our AEAD schemeto be exible in the functionalit y it provides. It should support arbitrary-
length messages:the messagespaceshould be f 0; 1g� . The key spaceof the AEAD should be the key
spaceKey of the underlying block cipher. We wanted to support noncesas long as the block length1; that
is, the noncespaceshould include f 0; 1gn . Any tag length � 2 [0::n] should be possible,to allow each user
to selecthow much security shewants from the integrit y guaranteesand how many bits shehas to pay for
this.2 The above considerationsimply that the only user-tunable parametersshould be E and � .

We took on some fairly aggressive performance goals. First, messageexpansion should be no more
than required: the length of the ciphertext (which, following the conventions of [17], excludesthe nonce)
should be only � bits more than the length of the plaintext. Implementations should be able to pro�tably
pre-processstatic associated data; for example, if we have an unchanging headerattached to every packet,
authenticating this headershould have no signi�cant cost after a single pre-computation. There should be
an e�cien t pseudorandomfunction (PRF) directly accessiblethrough the de�ned interface of the AEAD
scheme|as e�cien t as other conventional PRFs. Key-setup should be e�cien t and all block-cipher calls
should use the same underlying key, so that we do not incur the cost of key scheduling more than once.
For both encryption and decryption, we want to useonly the forward direction of the block cipher, so that
hardware implementations do not need to implement the decryption functionalit y of the block cipher. The
scheme should be on-line for both the plaintext M and the associated data H , which meansthat one can
processstreaming data on-the-y , using constant memory, not knowing when the stream will stop.

EAX achievesall of goalsdescribed above.

4 EAX Algorithm

Fix a block cipher E : Key � f 0; 1gn ! f 0; 1gn and a tag length � 2 [0::n]. These parameters should be
�xed at the beginning of a particular sessionthat will useEAX mode. Typically, the parameterswould be
agreedto in an authenticated manner between the senderand the receiver, or they would be �xed for all
time for someparticular application. Given theseparameters, EAX provides a nonce-basedAEAD scheme
EAX [E ; � ] whoseencryption algorithm has signature Key � Nonce� Header� Plaintext ! Ciphertext and
whosedecryption algorithm hassignature Key� Nonce� Header� Ciphertext! Plaintext[ f Inv alid g where
Nonce, Header, Plaintext, and Ciphertextare all f 0; 1g� . The EAX algorithm is speci�ed in Figure 2 and a
picture illustrating EAX encryption is given in Figure 3.

5 Discussion

No encodings. We have avoided any nontrivial encoding of multiple strings into a single one.3 Some
other approaches that we considered required a PRF to be applied to what was logically a tuple, like
(N ; H ; C). Doing this raisesencoding issueswe did not want to deal with because,ultimately , there is no

1 Here we will over-achieve, allowing a nonce space of f 0; 1g� .
2 Note that since our AEAD scheme is bit-orien ted and not byte-orien ted, � is the number of bits, not bytes, of the tag.
3 One could view the pre�xing of [t ]n to M in the de�nition of OMA C t

K (M ) as an encoding, but [t ]n is a constant, �xed-
length string, and the aim here is just to \t weak" the PRF. That is very di�eren t from needing to encode an arbitrary-length
messageM and an arbitrary-length header H into a single string, for example.
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Algorithm EAX :Encrypt N H
K (M )

10 N  OMAC 0
K (N )

11 H  OMAC 1
K (H )

12 C  CTR N
K (M )

13 C  OMAC 2
K (C)

14 Tag  N � C � H
15 T  Tag [�rst � bits]
16 return C  C k T

Algorithm EAX :DecryptN H
K (C)

20 if jCj < � then return Inv alid
21 Let C k T  C where jT j = �
22 N  OMAC 0

K (N )
23 H  OMAC 1

K (H )
24 C  OMAC 2

K (C)
25 Tag0  N � C � H
26 T0  Tag0 [�rst � bits]
27 if T 6= T0 then return Inv alid
28 M  CTR N

K (C)
29 return M

Figure 2: Encryption and decryption under EAX mode. The plaintext is M , the ciphertext is C, the key is K , the nonce
is N , and the header is H . The mode depends on a block cipher E (that CTR and OMAC implicitly use) and a tag
length � .

N

T

OMAC 0
K

C

HM

N

H

C

CTR K

OMAC 1
K

OMAC 2
K

Figure 3: Encryption under EAX mode. The messageis M , the key is K , and the headeris H . The ciphertext is C k T .
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CCM EAX

Functionalit y Authenticated Encryption with AD Authenticated Encryption with AD

Built from Block cipher E with 128-bit blocksize Block cipher E with n-bit blocksize

Parameters Block cipher E
Tag length � 2 f 4; 6; 8; 10; 12; 14; 16g
Length of msg length �eld � 2 [2::8]

Block cipher E
Tag length � 2 [0::n]

Message space Parameterized: 7 choices: � 2 [2::8].
Each possible messagespace a sub-
set of Byte � , from Byte 216 � 1 to
Byte < 264 � 1

f 0; 1g�

Nonce space Parameterized,with a value of 15� �
bytes. From 56 bits to 104 bits

f 0; 1g�

Key space One block-cipher key One block-cipher key

Ciphertext expansion � bytes � bits

Blo ck-cipher calls 2
l

jM j
128

m
+

l
jH j
128

m
+ 2+ � , for � 2 f 0; 1g 2

l
jM j

n

m
+

l
jH j
n

m
+

l
jN j
n

m

Blo ck-cipher calls
with static header

2
l

jM j
128

m
+

l
jH j
128

m
+ 2+ � , for � 2 f 0; 1g 2

l
jM j

n

m
+

l
jN j
n

m

Key setup Block cipher subkeys Block cipher subkeys
3 block-cipher calls

IV requiremen ts Non-repeating nonce Non-repeating nonce

Parallelizable? No No

On-line? No Yes

Prepro cessing (/msg) Limited (key stream only) Limited (key stream and headeronly)

Memory rqm ts Small constant Small constant

Pro vable securit y? Yes: reduction from block-cipher's
PRP security, bound of �( � 2=2128)

Yes: reduction from block-cipher's
PRP security, bound of �( � 2=2n )

Paten t-encum bered? No No

Figure 4: A comparison of basiccharacteristics of CCM and EAX .

e�cien t, compelling, on-line way to encode multiple strings into a single one. Alternativ ely, one could avoid
encodings and considera new kind of primitiv e, a multi-argument PRF. But this would be a non-standard
tool and we didn't want to useany non-standard tools. All in all, it seemedbest to �nd a way to sidestep
the needto do encodings, which is what we have done.

Why not generic composition? Why have we speci�ed a block-cipher based(BC-based) AEAD scheme
instead of following the generic-composition approach of combining a (priv acy-only) encryption method and
a messageauthentication code? There are reasonablearguments in favor of generic composition, basedon
aestheticor architectural sensibilities. One can arguethat genericcomposition better separatesconceptually
independent elements (priv acy and authenticit y) and, correspondingly, allows greater implementation exi-
bilit y [6,14]. Correctnessbecomesmuch simpler and clearer as well. The argument doeshave validit y. Still,
BC-based AEAD modes have some important advantages. BC-based AEAD enablesimproved e�ciency
(the strand of work not represented here but found in [11,17]) and makes it easier to use a cryptosystem
correctly and interoperably|for example, presenting a more directly useful API for developers. BC-based
AEAD reducesthe risk that implementors will chooseinsecureparameters. It makesit easierfor implemen-
tors to use a scheme without knowing a lot of cryptography. It saves on key bits and key-setup time, as
generic-composition methods invariably require a pair of separatekeys. Finally, it was a goal of this work
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to match or beat the characteristic of CCM [19], and that meant doing a BC-basedAEAD scheme.
All of that said, EAX can be viewed as having beenderived from a generic-composition schemewe call

EAX2, described in Section 7. Speci�cally , one instantiates the generic-composition scheme EAX2 with
CTR mode (counter mode) and OMAC, and then collapsesthe two keys into one. If one doesfavor generic
composition, EAX2 is a nice algorithm for it.

Why a conventional (tw o-pass) scheme? Having decided to give a BC-based AEAD scheme, why
stick to a conventional (i.e., two-pass)one, avoiding the line of work that starts with [11]? This choice is
di�cult to justify for any reasonbeyond patent-avoidance. We have not attempted to do so.

Comparing CCM and EAX . In Figure 4 we compare someof the properties of CCM[19] and EAX. The
count on block-cipher calls for EAX ignoreskey-setup costs. By the set Byte we mean f 0; 1g8.

Other comments. Among the bene�ts of following what is basically an encrypt-then-authenticate approach
is that invalid messagescan be rejected with half the work of an authenticate-then-encrypt approach.

To obtain a MAC as e�cien t as the underlying PRF, useMACK (H ) = Encrypt 0n H
K (" ).

In CCM [19] the tag-length parameter is authenticated. We have chosen not to do this becauseit is
unnecessaryto achieve our notion of security. Recall that the tag length, like the block-cipher itself, should
be �xed and agreed-to, in an authenticated way, at the beginning of a session.It is a usageerror to change
parameters in the middle of a session.In light of this, authenticating the tag length has no known bene�t.

Many applications won't care if their AE scheme is on-line|they know the length of the messagein
advance. Many applications won't care if they can pre-processa static header|p erhapsthe headeris just a
few blocks anyway. And soforth. Nothing wehavedonemandatesthe useof any novel feature of the provided
scheme. The point is to enable it. The de�ning characteristic of a general-purpose mode of operation is
that it is general purpose|w e can't anticipate what will be of primary concern to the application, and so
we need to try to anticipate the attributes that an application may �nd desirable and make sure that the
algorithm itself doesn't stand in the way.

Finally, where does the name EAX come from? It stands for encrypt-then-authenticate-then-t ranslate.
Clearly we had problems with the spelling of \translate".

6 In tellectual Prop ert y Statemen t

The authors neither have, nor are of aware of, any patents or pending patents relevant to EAX. We do not
intend to apply for any patents covering this technology. Our work for this note is hereby placed in the
public domain. As far as we know, EAX is free and unencumbered for all uses.

7 EAX2 Algorithm

This section is not necessaryto understand or implement EAX , but it is necessaryfor understanding the
proof of EAX as well as the general approach taken for its design. That approach has been to �rst design
a generic-composition scheme, EAX2, and then \collapse" to a single key for the particular caseof CTR
encryption and OMAC authentication.

EAX2 composition. Let F : Key1 � f 0; 1g� ! f 0; 1gn be a PRF, where n � 2. Let � = (E; D) be an IV-
basedencryption schemehaving key spaceKey2 and IV spacef 0; 1gn . This meansthat E: Key2� f 0; 1gn �
f 0; 1g� ! f 0; 1g� and D : Key2� f 0; 1gn � f 0; 1g� ! f 0; 1g� and Key2 is a set of keysand for every K 2 Key2
and N 2 f 0; 1gn and M 2 f 0; 1g� , if C = EN

K (M ) then DN
K (C) = M . Let � � n be a number. Now given F

and � and � we de�ne an AEAD schemeEAX2[� ; F; � ] = (EAX2 :Encrypt ; EAX2:Decrypt) as follows. Set
F t

K (M ) = FK ([t ]n k M ). Set Key = Key1 � Key2. Then the encryption algorithm EAX2:Encrypt : Key �
f 0; 1g� � f 0; 1g� ! f 0; 1g� and the decryption algorithm EAX2:Decrypt : Key� f 0; 1g� � f 0; 1g� ! f 0; 1g� [
f Inv alid g are de�ned in Figure 5 and the former is illustrated in Figure 6. EAX2[� ; F; � ] is provably secure
under natural assumptionsabout � and F . Seethe full version of this paper.
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Algorithm EAX2:Encrypt N H
K 1;K 2 (M )

10 N  F 0
K 1(N )

11 H  F 1
K 1(H )

12 C  EN
K 2(M )

13 C  F 2
K 1(C)

14 Tag  N � C � H
15 T  Tag [�rst � bits]
16 return C  C k T

Algorithm EAX2:DecryptN H
K 1;K 2 (C)

20 if jCj < � then return Inv alid
21 Let C k T  C where jT j = �
22 N  F 0

K 1(N )
23 H  F 1

K 1(H )
24 C  F 2

K 1(C)
25 Tag0  N � C � H
26 T0  Tag0 [�rst � bits]
27 if T 6= T0 then return Inv alid
28 M  DN

K 2(C)
29 return M

Figure 5: The genericcomposition schemeEAX2[� ; F; � ]. The schemeis build from a PRF F : Key1� f 0; 1g� ! f 0; 1gn

and an IV-basedencryption scheme� = (E; D) having key spaceKey2 and messagespacef 0; 1g� .

N

C

HM

N

H

C

T

F 0
K 1 F 1

K 1

F 2
K 1

EK 2

Figure 6: Encrypting under EAX2 . The plaintext is M and the key is (K 1; K 2) and the headeris H . The ciphertext is
C k T . By F i

K we mean the function whereF i
K (M ) = FK ([i ]n k M ).
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EAX1 composition. Let EAX1 be the single-key variant of EAX2 whereone insists that Key1 = Key2 and
whereonekeysF , E, and D with a singlekey K 2 Key = Key1 = Key2. That is, oneassociatesto F and �, as
above, the schemeEAX1[� ; F; � ] that is de�ned aswith EAX2 but wherethe key spaceis Key = Key1 = Key2
and the onekey K keyseverything. Notice that EAX [E ; � ] = EAX1[CTR[E ]; OMAC[E ]; � ]. This is a useful
way to look at EAX.

8 Securit y Theorem

EAX is a provably secureAEAD schemeif the underlying block cipher is a securepseudorandompermutation
(PRP). Proofs have beenomitted from the current writeup. The full paper, to be releasedsoon, will include
them.
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A Recommended API

Someimportant featuresof EAX can only be utilized if oneaccessesEAX functionalit y through an appropri-
ate user interface. In this section we therefore put forward an API that permits (a) incremental encryption,
(b) incremental decryption, (c) authenticit y veri�cation without ciphertext recovery, and (d) static headers
with negligible per-messagecost. Providing of these features results in an API that is a bit more elaborate
than someprogrammersmay want or need,so we also include somesimpler, \all-in-one" calls.

/*
* Weprovide two interfaces:
* 1. A simple interface that does not support streaming data.
* 2. An incremental interface that supports streaming data.
* See below for documentation on both.
*/

/****************************************************************** ***
* -- Howto encrypt, the simplified interface --
* First, call
* eax_init()
* to setup the key and set the parameters.
* Then, for each packet, call
* eax_encrypt()
* Whenall done, call
* eax_zeroize()
******************************************************************* **
* -- Howto decrypt, the simplified interface --
* First, call
* eax_init()
* to setup the key and set the parameters.
* Then, for each packet:
* eax_decrypt()
* Whenall done, call
* eax_zeroize()
* It is the caller's responsibility to check tag validity
* by examining the return value of eax_decrypt().
******************************************************************* */

/****************************************************************** ***
* -- Howto encrypt, incrementally --
* First, call
* eax_init()
* to setup the key and set the parameters.
* Then, for each packet, call
* eax_provide_nonce()
* {eax_provide_header(), eax_compute_ciphertext()}*
* eax_compute_tag()
* Here {x,y} means x or y, and z* means any number of iterations of z.
* Whenall done, call
* eax_zeroize()
*
* Note that encryption can be done on the fly, and header and messagedata
* may be provided in any order and in arbitrary chunks.
******************************************************************* **
* -- Howto decrypt, incrementally --
* First, call
* eax_init()
* to setup the key and set the parameters.
* Then, for each packet:
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* eax_provide_nonce()
* {eax_provide_header(), eax_provide_ciphertext()}*
* eax_check_tag()
* eax_compute_plaintext() // only do this if tag was valid
* Whenall done, call
* eax_zeroize()
* Note that decryption may be done on the fly, and header and messagedata
* may be provided in any order and in arbitrary chunks.
* It is the caller's responsibility to check tag validity
* by examining the return value of eax_check_tag().
******************************************************************* */

typedef enum{AES128,AES192,AES256}block_cipher; /* "standard" ciphers */
typedef unsigned char byte;
typedef void eax_state; /* EAXcontext; opaque */

/****************************************************************** ***
* Calls commonto incremental and non-incremental API
******************************************************************* */

/*
* eax_init
*
* Key and parameter setup to init a EAXcontext data structure.
* If you don't know what to pass for t,E, use t=16, E=AES128.
*/

eax_state *
eax_init(

byte* Key, // The key, as a string.
unsigned int t, // The tag length, in bytes.
block_cipher E // Enumerated that indicates what cipher to use.

);

/*
* eax_provide_header
*
* Supply a messageheader. The header "grows" with each call
* until a eax_provide_header() call is madethat follows a
* eax_encrypt(), eax_decrypt(), eax_provide_plaintext(),
* eax_provide_ciphertext() or eax_compute_plaintext() call.
* That starts reinitializes the header.
*/

int
eax_provide_header(

eax_state *K, // The EAXcontext.
byte *H, // The header (associated data) (possibly more to come)
unsigned int h // having h bytes

);

/*
* eax_zeroize
*
* Session is over; destroy all key material and cleanup!
*/

void
eax_zeroize(

eax_state *K // The EAXcontext to remove
);
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/****************************************************************** ***
* All-in-one, non-incremental interface
******************************************************************* */

/*
* eax_encrypt
*
* Encrypt the given messagewith the given key, nonce and header.
* Specify the header (if nonempty) with eax_provide_header().
*/

int
eax_encrypt(

eax_state *K, // The caller provides the EAXcontext,
byte* N, // the nonce and
unsigned int n, // its length (in bytes), and
byte* M, // the plaintext and
unsigned int m, // its length (in bytes).
byte* C, // The m-byte ciphertext
byte* T // and the tag T are returned.

);

/*
* eax_decrypt()
*
* Decrypt the given ciphertext with the given key, nonce and header.
* Specify the header (if nonempty) with eax_provide_header().
* Returns 1 for a valid ciphertext, 0 for an invalid ciphertext.
*/

int
eax_decrypt(

eax_state *K, // The caller provides the EAXcontext,
byte* N, // the nonce and
unsigned int n, // its length (in bytes), and
byte* C, // the ciphertext and
unsigned int c, // its length (in bytes), and the
byte* T, // tag.
byte* P // If valid, return the c-byte plaintext.

);

/****************************************************************** ***
* Incremental interface
******************************************************************* */

/*
* eax_provide_nonce
*
* Provide a nonce. For encryption, do this before calling
* eax_compute_ciphertext() and eax_compute_tag();
* for decryption, do this before calling
* eax_provide_ciphertext(), eax_check_tag, or eax_compute_plaintext().
*/

int
eax_provide_nonce(

eax_state *K, // The EAXcontext,
byte* N, // the nonce, and
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unsigned int n // the length of the nonce (in bytes).
);

/*
* eax_compute_ciphertext
*
* Encrypt a messageor a part of a message.
* The nonce needs already to have been
* specified by a call to eax_provide_nonce().
*/

int
eax_compute_ciphertext( // Encrypt (part of) a message

eax_state *K, // Given a EAXcontext K
byte *M, // and a messageM (possibly more to come)
unsigned int m, // having m bytes.
byte *C // Return a ciphertext body C also having m bytes.

);

/*
* eax_compute_tag
*
* Messageand header finished: compute the authentication tag that is a part
* of the complete ciphertext.
*/

int
eax_compute_tag(

eax_state *K, // Given a EAXcontext
byte *T // compute the tag T for it.

);

/*
* eax_provide_ciphertext
*
* Supply the ciphertext, or the next piece of ciphertext.
* This is used to check for the subsequent authenticity check eax_check_tag().
*/

int
eax_provide_ciphertext(

eax_state *K, // Given a EAXcontext
byte *C, // and a ciphertext C (possibly more to come)
unsigned int c // having c bytes.

);

/*
* eax_check_tag
*
* The nonce, ciphertext and header have all been fully provided; check if
* they are valid for the given tag.
* Returns 1 for a valid ciphertext, 0 for an invalid ciphertext
* (in which case plaintext/ciphertext might be zeroized as well).
*/

int
eax_check_tag(

eax_state *K, // Given a EAXcontext and
byte *T // the tag that accompanied the ciphertext.
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);

/*
* eax_compute_plaintext
*
* Recover the plaintext from the provided ciphertext.
* A call to eax_provide_nonce() needs to precede this call.
* The caller is responsible for separately checking if the ciphertext is valid.
* Normally this would be done before computing the plaintext with
* eax_compute_plaintext().
*/

int
eax_compute_plaintext(

eax_state *K, // Given a EAXcontext
byte *C, // and a ciphertext C (possibly more to come)
unsigned int c, // having c bytes,
byte *M // return the corresponding c bytes of plaintext.

);
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